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The paper studies the problem of characterizing the optimahty of competitive 
programs in terms of “decentrahzable” conditions. We show that, when future 
utilities are discounted, and the optimal stationary stock is proportionately expan- 
sible, then optimality of competitive programs can be characterized by the con- 
dition that the scalar product of the difference of prices and quantities, between 
those of the given competitive program and those of the optimal stationary 
program, be non-positive period by period. Jornal of Economic Literature 
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1. INTRODUCTION 

The aim of this paper is to present some results on the characterization 
of optimality of “competitive” programs, in terms of a “decentralizable” 
condition, in the context of a standard Ramsey-type multisector growth 
model, where the technology, the period welfare function, and the period 
discount factor, which is assumed less than one, are stationary over time. 

It is well known [from the price characterization results of Cass 
and Majumdar [2], Peleg [8,9], Peleg and Ryder [lo], Peleg and 
Zilcha [ 121, and Weitzman [ 1313 that in (discounted and undiscounted) 

* We are indebted to Mukul Majumdar for introducing us to the problems of intertemporal 
decentralization and for extremely helpful conversations. We thank M. Berliant, D. Cass, 
L. W. McKenzie, P. Romer, K. Shell, and a referee for many useful comments. Research of the 
second author was supported by a National Science Foundation grant. Research on this paper 
was started while the tirst author was on sabbatic leave at Cornell University and Jnstituto 
Torcuato Di Tella, Buenos Aires. 

274 
0022-053 l/88 $3.00 
CopyrIght 86 1988 by Academic Press, Inc. 
All rights of reproductmn m  any form reserved. 



DECENTRALIZATION IN THE DISCOUNTED CASE 215 

multisectoral growth models, a program, from positive initial stocks, is 
optimal if and only if there exists an associated sequence of prices such that 
(a) these prices “support” the welfare function and the technology, at the 
consumption and the input-output vectors respectively, in each period, 
along the given program; and (b) the value of inputs at these prices con- 
verges to zero along the program (this being the relevant condition in the 
“discounted” case, that is, when the discount factor is less than one; in the 
“undiscounted” case, that is, when the discount factor equals one, the 
relevant condition is that the input values be uniformly bounded along the 
program). Condition (a) above is typically interpreted as maximization of 
profits and maximization of welfare (subject to an appropriate budget 
constraint) at the input-output vector and the consumption vector, 
respectively, period by period, along the given program (see Gale and 
Sutherland [ 51). 

Recently Brock and Majumdar [ 1 J have investigated the possibility of 
characterizing the optimality of competitive programs in terms of con- 
ditions which can be verified by agents in an “informationally decen- 
tralized” mechanism. For a detailed discussion of the problem, we refer the 
reader to their paper. For our purpose here, it is sufficient to note that their 
objective is to replace the transversality condition, [condition, (b) above], 
in characterizing optimality of competitive programs, by a condition which 
can be verified by the agents, period by period, on the basis of information 
regarding prices in each period and possibly some additional fixed infor- 
mation or finite “messages” which are transmitted in each period. 

Brock and Majumdar [l] show that in models, where there exists an 
“optimal stationary program” (abbreviated as o.s.P.), which has a 
“stationary price support,” a characterization of optimality of competitive 
programs along such lines is possible. More specifically, they show that in 
the undiscounted case, if the input stock along the 0.s.p. is “expansible” 
(that is, an output vector can be produced from such a stock, which 
provides more of each good than was provided in the initial stock), then 
the transversality condition (b) can be replaced by the condition that (c) 
the scalar product of the difference of prices and of quantities, between 
those of the given competitive program and those of the o.s.p., be non- 
positive period by period. 

The main result of our paper is to show that, in the discounted case, 
optimality of competitive programs can be characterized by (the natural 
analog) of the condition proposed by Brock and Majumdar. More 
precisely, we show that [when the discount factor is less than one], and 
the input stock along the 0.s.p. is “proportionately expansible” [which is a 
slightly weaker requirement than being “expansible”], then the transver- 
sality condition (b) can be replaced by the “decentralizable condition” 
(c) in characterizing optimality of competitive programs. 
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It should be noted at this point that in the usual characterization results, 
it is well known that the transversality condition can be replaced by the 
condition that (b’) the prices “support” the value functon in each period 
(see Proposition 2.3 below). It is also known that (b’) implies (c) (see 
Theorem 2.2 below), so that the novel aspect of the new characterization 
results is that condition (c) is sufficient to guarantee that a competitive 
program is optimal (Theorem 3.1). 

It may be of interest to observe a difference in the nature of the charac- 
terization results involving the transversality condition and those involving 
condition (c). Using the transversality condition, optimality or non- 
optimality can be verilied, loosely speaking, only “at infinity,” that is, by 
investigating the asymptotic behaviour of input value along a competitive 
program. In contrast, using condition (c), non-optimality (but not 
optimality) can always be detected within some finite horizon. A “price” is 
paid for this “gain.” In the characterization involving the transversality 
condition, only knowledge regarding the competitive program is required, 
that is, the quantities as well as the supporting prices along the program. In 
contrast, in the characterization results in this paper involving condition 
(c), knowledge is required, in addition, of the quantities and prices of the 
0.s.p. Furthermore, it seems that typically, some mild “regularity” 
assumptions need to be made regarding the 0.s.p. 

Finally, it may be worthwhile to note that, like the characterization 
results involving condition (c), the standard characterizations using (b’) 
also show that non-optimality can always be detected within some finite 
horizon. Here, however, the difference in the two types of results lies in the 
extent and nature of the information required in the conditions (b’) and (c), 
respectively. In (b’), knowledge is required effectively of the entire value 
function, whereas in (c), the agents need to know only a finite set of num- 
bers, namely the constant output and the constant “current prices” of the 
0.s.p. Furthermore, the knowledge of the value function is just a step away 
from a parametric solution of the intertemporal optimization problem, 
namely the optimal policy function. In contrast, (c) requires the knowledge 
of the optimal policy function at a single point, namely the initial stock of 
the 0.s.p. 

2. PRELIMINARIES 

2a. Notation 

R” denotes the n-dimensional real vector space of n-tuples of real num- 
bers. For x, y in R”, x>ymeansx,>yifor i=l,...,n;x>ymeansx>,y 
and x # y; x B y means xi >yi for i = 1, . . . . n. R”, denotes the set (x in 
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R”:xaO}, and R”,, denotes the set {x in R”: x g O}. For x in R” the sum 
norm of x (denoted by (1 x I( ) is defined by 11 x I( = (XI= 1 1 xi I). We denote 
the vector (I, I, . . . . 1) in R” by e. 

2b. The Model 

The model is described by a triplet (Q w, 6), where $2, a subset of 
R”, xR”,, is the technology set, w: R”, + R is the period walfare function, 
and 6 is the discount factor satisfying 0 < 6 < 1. Points in Q are written as 
an ordered pair (x, y), where x stands for the (initial) stock of inputs and y 
stands for the (final) output which can be produced with inputs x. 

We shall need the following assumptions on 52 and w. 

(A.l) (a) (0,O) is in R; (b) (0, y) is in 0 implies y=O. 

(A.2) Q is closed. 

(A.3) There exists a number PO > 0 such that, if (x, y) is in Q and 

II x II 2 PO, then II Y II G II x Il. 
(A.4) If(x,y) is in Q, x’>x, and O<y’<y then (x’, y’) is in Q. 

(AS) Q is convex. 

(A.61 w is continuous. 

(A.7) Zf c, c’ are in R”, and c3 c’, then W(C) z w(c’); w(e) > w(O). 

(A.81 w is concave. 

2c. Programs 

A program from j in R: is a sequence (x(t), y(t)) such that 

Y(O) = J; O<x(t),<y(t) and (x(t),y(t+l))isinD for t 20. 

Associated with a program (x(t), y(t)) from j is a consumption sequence 
(c(t)) defined by 

dt)=Ytt)-xtt) for ta0. 

To proceed further, we need the familiar preliminary result that 
programs from j are uniformly bounded by a number which depends only 
on p and PO. We first establish 

LEMMA 2.1. Under (A.3) and (A.4), zf(x, y) is in Q, then 

0) II4 ~Aiw~ies II YII G/3,; (ii) II~ll<Max{llxll~B~~ 

ProoJ (i) Suppose on the contrary there exists (x0, y”) in Q satisfying 
II x0 II G PO and II Y’ II > PO. Define x’ = x0 + [PO - I( x0 II ](e/n). Since 
PO 2 )I x0 11, therefore, $2 x0. Hence, by (A.4), (x’, y”) is in Q. But 
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/Ix’ )I = /?,, and hence, 11 y” )I > 11 x’ 11. This contradicts (A.3) and, therefore, 
establishes (i). 

(ii) If II x II d PO, then by (ih II Y II d PO G Max { II x II T DO). If II x II 3 BO 

then, by (A.3), II y II d II x Ij < Max { II x II, /IO}. This establishes (ii). I 

LEMMA 2.2. Let j in R: be given. Define BE Max { )I ;I/, flo}. Under 

(A.3) and (A.4), if (4th y(t)> is a program from .F then (II x(f)ll, II v(t)ll, 
IIc(t)l()~(B,B,B),for t>O. 

Proof Since 0 d c(t) =y(t) - x(t) <y(t) for t 20, therefore, we only 
need to show that 

(llx(t)ll, II y(t)ll)<(B, B) for t>O. (2.1) 

First, II x(0)1/ Q II y(O)11 = II j II < B. Hence, (2.1) holds for t = 0. Consider 
any integer r > 0. Suppose (2.1) holds for t = r. Then II x(t + 1 )I\ < 
1) y(r + l)ll < Max{ II x(t)ll, PO} (using Lemma 2.l(ii)) <B (since IIx(r)ll <B 
by hypothesis). Thus, (2.1) holds for r = T + 1. This establishes (2.1) by 
induction and, therefore, the lemma. 1 

2d. Optimal and Competitive Programs 

In view of Lemma 2.2 and continuity of w  it is clear that for every 
program (x(t), y(t)) from j, C,“=o &w(c(t)) is absolutely convergent. We 
may, therefore, make the following definition: a program (x’(t), y”(t)) 
from j is an optimal program if, for every program (x(t), y(t)) from jj, we 
have 

f ~‘wtc”t~))> f d’w(c(t)). 
r=0 r=0 

The following lemma is a standard consequence of Lemma 2.2 and is 
stated without proof. 

LEMMA 2.3. Under (A. 1 )-(A.4) and (A.6), if J is in R”, then there is an 
optimal program (x(t), y(t)) from j. 

We may then define the value function V: R”, -+ R by V(y) = 
Cp”=o fi’w(c(t)), where (c(t)) is the consumption sequence associated with 
some optimal program (x(t), y(t) ) from y. 

A sequence (x(t), y(t), p(t)) from j is a competitive program if (x(t), 
y(t)) is a program from 9, p(t) is in R”, for t 2 0, and 

G’w(c(r))-p(t)c(t)>G’w(c)-p(t)c for c in R”, , r 3 0 (2.2) 
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and 

p(t+ l)y(t+ l)-P(t)x(t)>p(t+ l)y-p(t)x for (x,y)inQ t>O. 

(2.3) 

Adding up the inequalities (2.2) and (2.3) we note that if 
(x( t ), y( t ). p( t ) ) is a competitive program, then 

cwc(t))+p(t+ l)y(t+ l)-p(t)y(t)2b’u~(c)+p(t+ l)y-p(t)(x+c) 

(2.4) 
for all (x, y) in Q and all c in R”, . 

A competitive program (x(t), y(t), p(t)) is said to satisfy the transver- 
sality condition if 

lim p(t) x( 2) = 0. (2.5 1 
t-x 

2e. Characteriation of Optima&v of Competitive Programs in Terms of a 
Transversality Condition 

It is well known that a competitive program satisfying the transversality 
condition is optimal. We state this in Proposition 2.1 below for ready 
reference. The proof of this proposition is standard and therefore omitted. 
It need only be noted that (A.3), (A.4), and (A.6) guarantee (by virtue of 
Lemma 2.2) absolute convergence of C,“= 0 c?‘c~(c( t)) for any program (x(t), 
y(t)) from J in R”, . 

PROPOSITION 2.1. Under (A.3), (A.4), and (A.6), if (x(t), y(t), p(t)) is a 
competitive program from J in R”+ and 

lim infp(t) x(t) =0 
I + m (2.6) 

then (x(t), y(t)) is an optimal program from j. 

The converse of the above proposition (Proposition 2.2 below) requires 
the use of the convex structure of the model. A version of it has been 
established [under somewhat different assumptions than the ones we use] 
by Peleg [S] and Peleg and Ryder [lo]. The version we report here can be 
obtained from the result of Weitzman [ 131, and is proved in Dasgupta and 
Mitra [4]. 

A vector x in R”, is sufficient if there is y in R”, + such that (x, y) is in R. 
We shall need 

(A.9) There exists a sufficient vector in R”, . 

PROPOSITION 2.2. Under (A.1))(A.9) if (x(t), y(t)) is an optimal 
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program from j in R”, +, then there exists a price sequence (p(t)> in R”, 
such that 

(i) (x(t), y(t), p(t)) is competitive, 

(ii) ~‘W(t)) -P(t) y(t) 2 6’Vy) -p(t) Y foryin R”,, t>O, (2.7) 

and 

(iii) lim,,,p(t)x(t)=O. (2.8) 

Conditions (2.7) and (2.8) in the above result are not “independent.” For 
a competitive program, (2.7) implies (2.8), and (2.8) implies (2.7). We note 
this formally in the next result. 

PROPOSITION 2.3. Under (A.l)-(A.4) and (A.6), if (x(t), y(t), p(t)) is a 
competitive program from j in R”, , then it satisfies (2.7) if and only if it 
satisfies (2.8). 

Proof. If (x(t), y(t), p(t)) is competitive and satisfies (2.7), then 
G’V(y(t))-p(t)y(t)2G’V(O)-p(t)O. Hence OQp(t)y(t)~~6’[V(y(t))- 
V(O)]. Now, V( y(t)) is bounded above (by Lemma 2.2 and (A.6)), and V is 
defined over R”, (by Lemma 2.3). Consequently, we have lim, _ oD p(t) y(t) 
= 0, which implies (2.8), since 0 < x(t) <y(t) and p(t) > 0. 

If (4th y(t), P(t)> is competitive and satisfies (2.8), then we verify (2.7) 
as follows. Pick any T> 0 and y in R”, . Let (x’(s), y’(s)) be any program 
from y. Since (x(t), y(t), p(t)) is competitive, so by (2.4), we have for 
t2 T, 

U-w(c’(t - T)) - 44t))l G Cp(t + 1 )y(t + 1) -p(t) AtI1 

-[p(t+l)y’(t-T+l)-p(t)y’(t-T)]. 

Summing this from t = T to t = T+ N, we have 
T+N 

c b’[w(c’(t - T))- w(c(t))] 

G CP(T+N+ l)y(T+N+ ~)-P(T)Y(T)I 

- Cp(T+N+ l)y’(N+ l)-p(T)~‘(O)l 

<p(T+N+ l)y(T+N+ l)-p(T)y(T)+p(T)y’(O). 

Thus, we have 

6f 2 Pw(d(s)) - TiN 6’- Tw(C(,t)) 
0 T  1 
<p(T+N+ l)y(T+N+ I)-~(T)y(T)+ptT)y. 
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Since the sums in the above expressions converge as N + co [by 
(A.l)-(A.4) and (A.6)], and (2.8) holds, so 

dT ~a.~w(~~(s))-~~~~Tw(~(t), 
[ 1 GP(T)Y-P(T)Y(T). 

T  

By the principle of optimality, (x( T+ s), y( T+ s)) is an optimal program 
from y(T), and so 

f,~-Tw(c(t))=~6sw(c(T+s))= V(y(T)). 
T  0 

Consequently we have 

which establishes the inequality in (2.7) for the given y and T. Since y in 
R”, and T>O were arbitrary, so (2.7) is satisfied. 1 

2f. An Optimal Stationary Program 

A program (x*(t), y*(t)) from y* is a stationary program if there is x* 
such that (x*(t), y*(t)) = (x*, y*) for t 30. It is \an optimal stationary 
program (abbreviated as 0.s.p.) if it is a stationary program and it is 
optimal from y*. In this case, we refer to x* as an optimal stationary stock 
(abbreviated as o.s.s.). We refer to an 0.s.p. as (x*, y*) with obvious inter- 
pretation, and its associated consumption sequence as (c*), where 
C*Gy*- x*. A vector q* in R”, is a stationary price support for an 0.s.p. 
(x*, y*) if (x*(t), y*(t), p*(t)) = (x*, y*, 6’q*) is competitive from y*. 

The question of existence of an 0.s.p. has been discussed extensively in 
the literature, most recently by Khan and Mitra [6] and McKenzie [7]. 
We note below a proposition on the existence of an optimal stationary 
program with stationary price support. A version of this result has been 
established by Peleg and Ryder [ 111, under somewhat different 
assumptions than the ones we use. The version we report here can be 
obtained from the result of Khan and Mitra [6], and is proved in 
Dasgupta and Mitra [4]. 

The technology set Q is called &productive if there exists (a, j) in 52, 
such that s$$->. We shall need 

(A.lO) 52 is &productive. 

PROPOSITION 2.4. Under (A.lb(A.8) and (A.lO), there is (x*, y*) in Q, 
C*Ey* -x* > 0, w(c*) > w(O), and q* in R”, such that (x*, y*) is an 0.s.p. 
with stationary price support, q*. 
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For the remainder of the paper we fix one particular 0.s.p. (x*, y* ) and 
its stationary price support q * for the purpose of definitions to follow. 
Furthermore, we denote 6’q* by p*(t) for t 3 0. 

3. CHARACTERIZATION OF OPTIMALITY OF COMPETITIVE PROGRAMS IN 
TERMS OF A DECENTRALIZABLE CONDITION 

In this section, we show that optimality of competitive programs can be 
characterized in terms of the simple decentralizable rule of Brock and 
Majumdar [ 11, which requires for its verification in each period knowledge 
of current prices (that is, measured in terms of current welfare) and output 
quantities and knowledge of (x*, y*, q*). Clearly, the difficult part of this 
characterization is to show that if a competitive program satisfies the 
decentralizable rule [that the scalar product of the difference of prices and 
quantities, between those of the given competitive program and those of 
the o.s.p., be non-positive, period by period] then it is optimal. We first 
establish two preliminary results (Lemmas 3.1 and 3.2) and then provide 
the main theorem of the paper (Theorem 3.1). 

If (x(t), y(t), p(t)) is a competitive program from y in R”, , then we 
denote 

P(f) = (p(t) -P*(t)) (x(t) -x*(t)) for ta0 

v(t) = (p(t) -P’(f)) (y(t) -Y*(t)) for t>O 

O(t)=p(t+ 1)-p(t) for t>O. 

Furthermore, we denote the current price sequence associated with it, 
<p(t)W), by (q(t)). 

LEMMA 3.1. Suppose (x(t), y(t), p( t ) ) is a competitive program from j. 
Then the following conditions hold: 

(i) v(t+ l)>p(t)>v(t) for t30, 

(ii) p(t+ 1)2p(t) for t 20. 

Proof: Since (x(t), y(t), p(t)) is competitive, so by (2.2) we have for 
t B 0, 

s’[w(c(t))-w(C*)] >p(t)[c(t)-cc*]. (3.1) 

Since (.x*,y*,p*(t)) is competitive, so by (2.2), we have for t 30, 

s’[w(c*) - w(c(t))] 3 -p*(t)[c(t)- C-*1. (3.2) 
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Adding (3.1) and (3.2), we get 

[P(t) -P*(~)l[c(t) - c*] < 0 for t>O, 

so that 

[P(l) -P*(t)lC4t) -x*1 2 [P(t) -P*(f)lCY(t) -Y*l for tg0. (3.3) 

Similarly, since (x(t), y(t), p(t) ) is competitive, so by (2.3), we have for 
f 3 0, 

P(l + 1 )Cy(t + 1) -y*] 2p(t)[x(t) - x*1. (3.4) 

And, since (x*, y*, p*(t)) is competitive, so by (2.3), we have for t>O, 

-p*(t + l)[y(t+ 1)-y*] 2 -p*(t)[x(t)-x*1. (3.5) 

Adding (3.4) and (3.5), we get for t 2 0, 

Cp(t+ l)-P*(t+ l)lL-Y(f+ l)-Y*la Cp(~)-p*(~)lCx(t)-x*l. (3.6) 

Combining (3.3) and (3.6) yields (i). 
To establish (ii), note simply from (i) that p( t + 1) > v(t + 1) for t > 0, 

and v( t + 1) 3 p(t) for t > 0, so that the conclusion is obvious. 1 

LEMMA 3.2. Suppose (x(t), y(t), p(t) ) is a competitive program from j, 
which satisfies p(t) < 0 for t > 0. Then, the following conditions hold: 

(i) O(t)>0 for t 20, and co” d(t) < a, 
(ii) O(t) -+ 0 as t+c;O. 

Proof. From Lemma 3.1 (ii), we have 0(t) B 0 for t > 0. Also, for Tg 0, 

W)=&W=~ Cp(t+ l)-p(t)l=/4T+ 1)-p(O)< -p(O) 
0 0 

since p( T + 1) 6 0, by hypothesis. Thus, (S(T)) is a monotonically non- 
decreasing sequence, bounded above, hence it converges. This establishes 
6). 

It follows directly from (i) that e(t) + 0 as t --* co, which is (ii). 1 

A vector x in R”, is called expansible if there is y 9 x, such that (x, y) is 
in 0. It is called proportionately expansibze if there is II > 1, such that 
(x, Ax) is in 9. Clearly, if x is expansible, it is also proportionately expan- 
sible; the converse is false. 
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THEOREM 3.1. Suppose x* is proportionately expansible. Zf (x(t), y(t), 
p(t)) is a competitive program from j, which satisfies 

(4(t)-q*)(Y(t)-?,*)~O for t 20, (3.7) 

then (x(t), y(t)) is an optimal program from ,C. 

Proof: We note right at the outset that (3.7) implies that v(t) 60 for 
t 3 0. This, in turn, implies that p(t) < 0 for t > 0 by Lemma 3.1, and so 
e(t)-+0 as t-+co by Lemma3.2. 

Our first task now is to show that 

p(t) x* + 0 as t+co. (3.8) 

To this end, use the competitive conditions for (x(t), y(t), p(t)) to write 
for t > 0, 

S’+‘W(C(t + 1)) +p(t + 1) x(t + 1)-p(t) x(t) 

g&+’ dc) + P(t + 1 )(Y - c) -p(t) x (3.9) 

for all (x, y) in 52, and all c in R”, . Since x* is proportionately expansible, 
there is I > 1 such that (x*, 1x*) is in Q. Using this in (3.9), we get for 
t>o, 

d’+‘w(c(t+ l))+p(t+ l)x(t+ l)-p(t)x(t) 

>#+’ w(0) +p(t + 1) 1x* -p(t) x*. (3.10) 

Transposing terms in (3.10), we get for t > 0 

8’+1[w(c(t+ l))-w(O)]+p(t+ l)[x(t+ l)-x*1-p(t)[x(t)-x*1 

2(n-l)p(t+l)x*. (3.11) 

Note that p(t+ l)[x(t+ 1)--x*] = [p(t+ 1)-p*(t+ l)][x(t+l)-x*] + 
p*(t+ l)[x(t+ 1)-x*] = p(t+ l)+p*(t+ l)[x(t+ 1)-x*]. Similarly, 
p(t)[x(t)-x*] =p(t)+p*(t)[x(t)-x*]. Using these in (3.11), we get 

s’+‘[w(c(t+1))-w(0)]+~(t+1)+p*(t+l)[x(t+1)-x*] 

-p(t)-pP*(t)[x(t)-x*1 >(A- l)p(t+ 1)x*. (3.12) 

Looking at the left-hand side of (3.12), we note that [p(t + 1) - p(t)] = e(t) 
converges to zero as t + 00. The term p*(t)[x(t) - x*] clearly converges to 
zero, since p*(t)=d’q* + 0 as t -+ co, and /x(t)ll <B; the same obser- 
vation holds for the term p*(t + 1) [x(t + 1) -x*1. Finally, (1 c(t + l)\\ < B 
and continuity of w  [by (A&)] imply that w(c(t + 1)) is bounded above, 
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while w(0) is in R; so LY+‘[w(c(t + l))- w(O)] +O as t+ co, since 
6”’ -+ 0 as t + co. Thus, (3.8) follows from (3.12). 

Our second task is to show that 

P(f) x(t) + 0 as t-+03. (3.13) 

This is rather easy, given (3.8). To see this, note that since p(t) d 0 for 
t > 0, so 

p(t)(x(t)-x*)~p*(t)(x(t)-x*) for t > 0. (3.14) 

This yields in turn, for t 3 0, 

p(t)x(t)~p(t)x*+p*(t)(x(t)-x*)<p(t)x*+p*(t)x(t). (3.15) 

Now, p*(t)x(t)+O as t+ co, since p*(t)=#q*+O as t-r co, while 
IIx(t)ll <B for ta0. Also, by (3.8), p(t)x* -+O as t+ m. Now, (3.13) 
follows from (3.15). 

Since (x(t), y(r), p(t)) is a competitive program satisfying the transver- 
sality condition given by (3.13), so (x(t), y(t)) is optimal from j, by 
Proposition 2.1. 1 

Remark. The proof of Theorem 3.1 combines the ideas used in the 
earlier proofs (in Theorems 4.1 and 4.3) of Dasgupta and Mitra [3]. 
However, it uses weaker assumptions than either of those earlier results, 
and therefore includes both those results as special cases. 

If we look at the proof of Theorem 3.1, we notice, in particular, that it 
does not use the convexity of the technology set or concavity of the welfare 
function. In fact, if we assume (A.1 k(A.4) and (A.6), and we also assume 
the condition 

(E.) There exists an 0.s.p. (x*, y*), with stationary price support, q*, such 
that x* is proportionately expansible, 

then Theorem 3.1 holds. In this sense, the requirements to prove 
Theorem 3.1 are similar to the requirements to prove Proposition 2.1. The 
additional requirement is condition (E), which can then be considered to be 
the “price paid” for replacing the transversality condition in Proposition 2.1 
by the decentralizable condition in Theorem 3.1. 

The converse of Theorem 3.1 is fairly well known. We state and prove it 
here formally for the sake of completeness. 

THEOREM 3.2. Suppose (x(t), y(t)) is an optimal program from jj in 
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R”, + . Then, there is a sequence (p(t) ) such that (X(I), y(t), p(t) ) is com- 
petitive from 9, and 

(dt)-q*)(Y(t)-Y*)GO for t>O. (3.16) 

Proof. By Proposition 2.2, there is a sequence (p(t)) such that (x(t), 
y(t), p(t)) is competitive from 9, and for t 2 0, 

UY(f)) - 4(l) y(t) 3 V(Y) -q(t) Y for ail y in R”, . (3.17) 

Using y=y* in (3.17), we get for t>O 

UY(f)) - uY*) 2 q(t)Cy(t) -y*1. (3.18) 

Using Proposition 2.4, (x*, y*,p*(t)) is competitive from y*, and 
p*(t) x* = B’q*x* + 0 as t -+ co. Hence, by Proposition 2.3, 

QY*) - q*y* 3 UY) - q*y for ally in R”, . (3.19) 

Using y = y(t) in (3.19), and transposing terms, 

uY*) - UY(f))2 -q*CY(t)-Y*l* 

Adding (3.18)and (3.20), we get (3.16). 1 

(3.20) 
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